Papers
Topics
Authors
Recent
2000 character limit reached

WebCoderBench: Benchmarking Web Application Generation with Comprehensive and Interpretable Evaluation Metrics

Published 5 Jan 2026 in cs.SE and cs.AI | (2601.02430v1)

Abstract: Web applications (web apps) have become a key arena for LLMs to demonstrate their code generation capabilities and commercial potential. However, building a benchmark for LLM-generated web apps remains challenging due to the need for real-world user requirements, generalizable evaluation metrics without relying on ground-truth implementations or test cases, and interpretable evaluation results. To address these challenges, we introduce WebCoderBench, the first real-world-collected, generalizable, and interpretable benchmark for web app generation. WebCoderBench comprises 1,572 real user requirements, covering diverse modalities and expression styles that reflect realistic user intentions. WebCoderBench provides 24 fine-grained evaluation metrics across 9 perspectives, combining rule-based and LLM-as-a-judge paradigm for fully automated, objective, and general evaluation. Moreover, WebCoderBench adopts human-preference-aligned weights over metrics to yield interpretable overall scores. Experiments across 12 representative LLMs and 2 LLM-based agents show that there exists no dominant model across all evaluation metrics, offering an opportunity for LLM developers to optimize their models in a targeted manner for a more powerful version.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.