Verstraete’s 1/3-Conjecture for cubic graphs of girth at least 6
Prove that for every cubic graph G on n vertices with girth g(G) ≥ 6, the domination number satisfies γ(G) ≤ n/3.
References
\begin{conjecture}{\rm (Verstraete)} \label{conj2} If $G$ is a cubic graph on $n$ vertices with girth $g \ge 6$, then $\gamma(G) \le \frac{1}{3}n$. \end{conjecture}
— The 1/3-conjectures for domination in cubic graphs
(2401.17820 - Dorbec et al., 31 Jan 2024) in Section 1: Introduction