Exact v-number for cycles
Determine the exact value of v(J_{C_n}) for the binomial edge ideal J_{C_n} of the cycle graph C_n on n vertices, by proving that v(J_{C_n}) = n - ⌊n/3⌋ = ⌈2n/3⌉ for all n ≥ 6.
References
Conjecture {\em Let $C_n$ denote the cycle graph on $n$ vertices and $B_n$ denote the binary tree of level $n$. Then (1) $\mathrm{v}(J_{C_n}) = n - \lfloor\frac{n}{3} \rfloor=\lceil \frac{2n}{3}\rceil$ for all $n \geq 6$; (2) $\mathrm{v}(J_{B_n}) = 2{n-1} + \mathrm{v}(J_{B_{n-3})$ for all $n \geq 3$.}
                — On the $\mathrm{v}$-number of binomial edge ideals of some classes of graphs
                
                (2405.15354 - Dey et al., 24 May 2024) in Section 3 (v=2 and expected v-number of cycles and binary trees)