Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free Sets in Planar Graphs: History and Applications (2403.17090v2)

Published 25 Mar 2024 in cs.CG, cs.DM, and math.CO

Abstract: A subset $S$ of vertices in a planar graph $G$ is a free set if, for every set $P$ of $|S|$ points in the plane, there exists a straight-line crossing-free drawing of $G$ in which vertices of $S$ are mapped to distinct points in $P$. In this survey, we review - several equivalent definitions of free sets, - results on the existence of large free sets in planar graphs and subclasses of planar graphs, - and applications of free sets in graph drawing. The survey concludes with a list of open problems in this still very active research area.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. Graphs with homeomorphically irreducible spanning trees. J. Graph Theory, 14(2):247–258, 1990. doi:10.1002/JGT.3190140212.
  2. Universal point subsets for planar graphs. In Algorithms and Computation - 23rd International Symposium, ISAAC 2012, volume 7676 of LNCS, pages 423–432. Springer, 2012a. doi:10.1007/978-3-642-35261-4_45.
  3. SEFE without mapping via large induced outerplane graphs in plane graphs. Journal of Graph Theory, 2015. Also in, Proc. 24th Int. Symp. on Algorithms and Computation, (ISAAC), page 185–195. (2013).
  4. SEFE without mapping via large induced outerplane graphs in plane graphs. J. Graph Theory, 82(1):45–64, 2016. doi:10.1002/JGT.21884.
  5. On a tree and a path with no geometric simultaneous embedding. J. Graph Algorithms Appl., 16(1):37–83, 2012b. doi:10.7155/JGAA.00250.
  6. Superpatterns and universal point sets. J. Graph Algorithms Appl., 18(2):177–209, 2014. doi:10.7155/JGAA.00318.
  7. Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 81(4):1561–1583, 2019. doi:10.1007/S00453-018-0487-5.
  8. Column planarity and partially-simultaneous geometric embedding. J. Graph Algorithms Appl., 21(6):983–1002, 2017. doi:10.7155/JGAA.00446.
  9. Column planarity and partial simultaneous geometric embedding for outerplanar graphs. In Abstracts of the 31st European Workshop on Computational Geometry (EuroCG), pages 53–56. 2015.
  10. David Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736, 1966.
  11. Therese Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discret. Comput. Geom., 45(1):141–160, 2011. doi:10.1007/S00454-010-9310-Z.
  12. Circumference of 3-connected claw-free graphs and large Eulerian subgraphs of 3-edge connected graphs. J. Combin. Theory Ser. B, 101:214–236, 2011.
  13. Simultaneous embedding of planar graphs. In In Roberto Tamassia (editor), Handbook of Graph Drawing and Visualization, pages 349–381. 2013.
  14. Longest cycles in 3-connected 3-regular graphs. Canadian Journal of Mathematics, 32:987–992, 1980.
  15. Prosenjit Bose. On embedding an outer-planar graph in a point set. In Graph Drawing, 5th International Symposium, GD ’97, volume 1353 of LNCS, pages 25–36. Springer, 1997. doi:10.1007/3-540-63938-1_47.
  16. Connected dominating sets in triangulations. CoRR, abs/2312.03399, 2023. doi:10.48550/ARXIV.2312.03399. doi:10.48550/arXiv.2312.03399.
  17. A polynomial bound for untangling geometric planar graphs. Discret. Comput. Geom., 42(4):570–585, 2009. doi:10.1007/S00454-008-9125-3.
  18. Selected open problems in graph drawing. In Graph Drawing, volume 2912 of LNCS, pages 515–539. Springer, 2003.
  19. On simultaneous planar graph embeddings. Comput. Geom., 36(2):117–130, 2007. Also in, 8th Int. Workshop on Algorithms and Data Structures (WADS), pages 243–255. (2003).
  20. Upper bound constructions for untangling planar geometric graphs. SIAM J. Discret. Math., 28(4):1935–1943, 2014. doi:10.1137/130924172.
  21. On universal point sets for planar graphs. In Computational Geometry and Graphs - Thailand-Japan Joint Conference, (TJJCCGG), pages 30–41. 2012.
  22. Straight line embeddings of planar graphs on point sets. In Proceedings of the 8th Canadian Conference on Computational Geometry, CCCG 1996, pages 312–318. 1996.
  23. Josef Cibulka. Untangling polygons and graphs. Discret. Comput. Geom., 43(2):402–411, 2010. doi:10.1007/S00454-009-9150-X.
  24. Drawing planar graphs with many collinear vertices. J. Comput. Geom., 9(1):94–130, 2018. doi:10.20382/JOCG.V9I1A4.
  25. Matched drawings of planar graphs. J. Graph Algorithms Appl., 13(3):423–445, 2009.
  26. Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, 5th edition, 2018.
  27. Vida Dujmović. The utility of untangling. J. Graph Algorithms Appl., 21(1):121–134, 2017. doi:10.7155/JGAA.00407. Also in, Graph Drawing and Network Visualization - 23rd International Symposium, GD 2015.
  28. Dual circumference and collinear sets. Discret. Comput. Geom., 69(1):26–50, 2023. doi:10.1007/S00454-022-00418-4.
  29. Every collinear set in a planar graph is free. Discret. Comput. Geom., 65(4):999–1027, 2021. doi:10.1007/S00454-019-00167-X.
  30. Characterization of unlabeled level planar trees. Comput. Geom., 42(6-7):704–721, 2009.
  31. Column planarity and partial simultaneous geometric embedding. In Graph Drawing - 22nd International Symposium, GD 2014, volume 8871 of LNCS, pages 259–271. Springer, 2014. doi:10.1007/978-3-662-45803-7_22.
  32. Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Applications, 7(4):363–398, 2003. doi:10.7155/jgaa.00075.
  33. Small sets supporting fáry embeddings of planar graphs. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 426–433. ACM, 1988. doi:10.1145/62212.62254.
  34. How to draw a planar graph on a grid. Comb., 10(1):41–51, 1990. doi:10.1007/BF02122694.
  35. István Fáry. On straight-line representation of planar graphs. Acta Sci. Math. (Szeged), 11:229–233, 1948.
  36. New bounds on the local and global edge-length ratio of planar graphs. CoRR, abs/2311.14634, 2023. doi:10.48550/ARXIV.2311.14634. doi:10.48550/arXiv.2311.14634.
  37. How many vertex locations can be arbitrarily chosen when drawing planar graphs? CoRR, abs/1212.0804, 2012. doi:10.48550/arXiv.1212.0804.
  38. Untangling a planar graph. Discret. Comput. Geom., 42(4):542–569, 2009. doi:10.1007/S00454-008-9130-6.
  39. Embedding a planar triangulation with vertices at specified points (solution to problem e3341). Amer. Math. Monthly, 98:165–166, 1991.
  40. Shortness exponents of families of graphs. Journal of Combinatorial Theory, Series A, 14(3):364–385, 1973. doi:https://doi.org/10.1016/0097-3165(73)90012-5.
  41. Bill Jackson. Longest cycles in 3-connected cubic graphs. J. Combin. Theory Ser. B, 41:17–26, 1986.
  42. Untangling planar graphs from a specified vertex position - hard cases. Discret. Appl. Math., 159(8):789–799, 2011. doi:10.1016/J.DAM.2011.01.011.
  43. Triangulating planar graphs while minimizing the maximum degree. Inf. Comput., 135(1):1–14, 1997. doi:10.1006/inco.1997.2635.
  44. Circumference of 3-connected cubic graphs. J. Comb. Theory, Ser. B, 128:134–159, 2018. doi:10.1016/j.jctb.2017.08.008.
  45. Peter J. Owens. Regular planar graphs with faces of only two types and shortness parameters. J. Graph Theory, 8(2):253–275, 1984. doi:10.1002/JGT.3190080207.
  46. Untangling a polygon. Discret. Comput. Geom., 28(4):585–592, 2002. doi:10.1007/S00454-002-2889-Y. Also in, Graph Drawing, 9th International Symposium, GD 2001.
  47. Monotone drawings of planar graphs. J. Graph Theory, 46(1):39–47, 2004. doi:10.1002/JGT.10168.
  48. On collinear sets in straight-line drawings. In Proc. 37th International Workshop on Graph-Theoretic Concepts in Computer Science, (WG), pages 295–306. 2011.
  49. The four-colour theorem. J. Comb. Theory, Ser. B, 70(1):2–44, 1997. doi:10.1006/jctb.1997.1750.
  50. A note on universal point sets for planar graphs. J. Graph Algorithms Appl., 24(3):247–267, 2020a. doi:10.7155/JGAA.00529.
  51. A note on universal point sets for planar graphs. J. Graph Algorithms Appl., 24(3):247–267, 2020b. doi:10.7155/JGAA.00529.
  52. Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor, Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San Francisco, California, USA, pages 138–148. SIAM, 1990.
  53. Sherman K. Stein. Convex maps. Proceedings of the American Mathematical Society, 2(3):464–466, 1951. doi:10.2307/2031777.
  54. Raphael Steiner. A logarithmic bound for simultaneous embeddings of planar graphs. In Graph Drawing and Network Visualization - 31st International Symposium, GD 2023, volume 14466 of LNCS, pages 133–140. Springer, 2023. doi:10.1007/978-3-031-49275-4_9.
  55. Peter Guthrie Tait. Remarks on the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A, 10:729, 1880.
  56. William T. Tutte. On Hamilton circuits. J. Lond. Math. Soc., 21:98–101, 1946.
  57. William T. Tutte. How to draw a graph. Proceedings of The London Mathematical Society, 13:743–767, 1963.
  58. Klaus Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung, 46:26–32, 1936.

Summary

We haven't generated a summary for this paper yet.