Kostochka’s bipartite cubic 1/3-Conjecture
Establish that every cubic bipartite graph G of order n satisfies the domination bound γ(G) ≤ n/3.
References
\begin{conjecture}{\rm ()} \label{conj1} If $G$ is a cubic bipartite graph of order~$n$, then $\gamma(G) \le \frac{1}{3}n$. \end{conjecture}
— The 1/3-conjectures for domination in cubic graphs
(2401.17820 - Dorbec et al., 31 Jan 2024) in Section 1: Introduction