On the $\mathrm{v}$-number of binomial edge ideals of some classes of graphs (2405.15354v1)
Abstract: Let $G$ be a finite simple graph, and $J_G$ denote the binomial edge ideal of $G$. In this article, we first compute the $\mathrm{v}$-number of binomial edge ideals corresponding to Cohen-Macaulay closed graphs. As a consequence, we obtain the $\mathrm{v}$-number for paths. For cycle and binary tree graphs, we obtain a sharp upper bound for $\mathrm{v}(J_G)$ using the number of vertices of the graph. We characterize all connected graphs $G$ with $\mathrm{v}(J_G) = 2$. We show that for a given pair $(k,m), k\leq m$, there exists a graph $G$ with an associated monomial edge ideal $I$ having $\mathrm{v}$-number equal to $k$ and regularity $m$. If $2k \leq m$, then there exists a binomial edge ideal with $\mathrm{v}$-number $k$ and regularity $m$. Finally, we compute $\mathrm{v}$-number of powers of binomial edge ideals with linear resolution, thus proving a conjecture on the $\mathrm{v}$-number of powers of a graded ideal having linear powers, for the class of binomial edge ideals.
- v𝑣vitalic_v-numbers of symbolic power filtrations. arXiv preprint arXiv:2403.09175, 2024.
- The vv\mathrm{v}roman_v-number of binomial edge ideals. to appear in Acta Math. Vietnam., arXiv:2304.06416, 2023.
- A study of v𝑣vitalic_v-number for some monomial ideals. arXiv preprint arXiv:2308.08604, 2023.
- Asymptotic behaviour and stability index of v-numbers of graded ideals. arXiv preprint arXiv:2402.16583, 2024.
- Cohen–Macaulay binomial edge ideals and accessible graphs. Journal of Algebraic Combinatorics, pages 1–32, 2021.
- On the binomial edge ideals of block graphs. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa. Seria Matematică, 24(2):149–158, 2016.
- Yusuf Civan. The v𝑣vitalic_v-number and Castelnuovo-Mumford regularity of graphs. J. Algebraic Combin., 57(1):161–169, 2023.
- Aldo Conca. A note on the v𝑣vitalic_v-invariant. to appear in Proc. Amer. Math. Soc., arXiv:2401.00022, 2023.
- Generalized minimum distance functions and algebraic invariants of geramita ideals. Advances in Applied Mathematics, 112:101940, 2020.
- Generalized minimum distance functions and algebraic invariants of Geramita ideals. Adv. in Appl. Math., 112:101940, 34, 2020.
- Young diagrams and determinantal varieties. Inventiones Mathematicae, 56(2):129–165, 1980.
- Cohen-macaulay binomial edge ideals. Nagoya Mathematical Journal, 204:57–68, 2011.
- Powers of binomial edge ideals with quadratic Gröbner bases. Nagoya Math. J., 246:233–255, 2022.
- Antonino Ficarra. Simon conjecture and the v-number of monomial ideals. Collectanea Mathematica, 2024.
- Asymptotic behaviour of the v-number of homogeneous ideals. arXiv preprint arXiv:2306.14243, 2023.
- Asymptotic behaviour of integer programming and the v-function of a graded filtration. arXiv preprint arXiv:2403.08435, 2024.
- On the asymptotic behaviour of the vasconcelos invariant for graded modules. arXiv preprint arXiv:2401.16358, 2024.
- Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics, 45(3):317–333, 2010.
- D. Jaramillo and R. H. Villarreal. The v-number of edge ideals. Journal of Combinatorial Theory, Series A, 177:Paper No. 105310, 35, 2021.
- Connected domination in graphs and v-numbers of binomial edge ideals. Collectanea Mathematica, 2023.
- Regularity of binomial edge ideals of certain block graphs. Proc. Indian Acad. Sci. Math. Sci., 129(3):Paper No. 36, 10, 2019.
- On the vv\mathrm{v}roman_v-number of gorenstein ideals and frobenius powers. arXiv preprint arXiv:2311.04136, 2023.
- The slope of v-function and waldschmidt constant. arXiv preprint arXiv:2404.00493, 2024.
- Regularity bounds for binomial edge ideals. Journal of Commutative Algebra, 5(1):141–149, 2013.
- Masahiro Ohtani. Graphs and ideals generated by some 2-minors. Communications in Algebra®, 39(3):905–917, 2011.
- Graph rings and ideals: Wolmer vasconcelos contributions. arXiv preprint arXiv:2305.06270, 2023.
- Construction of Cohen–Macaulay binomial edge ideals. Communications in Algebra, 42(1):238–252, 2014.
- Binomial edge ideals of graphs. Electronic journal of combinatorics, 19(2):Paper 44, 6, 2012.
- Kamalesh Saha. The v-number and castelnuovo-mumford regularity of cover ideals of graphs. International Mathematics Research Notices, page rnad277, 11 2023.
- The vv\mathrm{v}roman_v-number of monomial ideals. J. Algebraic Combin., 56(3):903–927, 2022.
- Xinxian Zheng. Resolutions of facet ideals. Comm. Algebra, 32(6):2301–2324, 2004.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.