Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the $\mathrm{v}$-number of binomial edge ideals of some classes of graphs (2405.15354v1)

Published 24 May 2024 in math.AC

Abstract: Let $G$ be a finite simple graph, and $J_G$ denote the binomial edge ideal of $G$. In this article, we first compute the $\mathrm{v}$-number of binomial edge ideals corresponding to Cohen-Macaulay closed graphs. As a consequence, we obtain the $\mathrm{v}$-number for paths. For cycle and binary tree graphs, we obtain a sharp upper bound for $\mathrm{v}(J_G)$ using the number of vertices of the graph. We characterize all connected graphs $G$ with $\mathrm{v}(J_G) = 2$. We show that for a given pair $(k,m), k\leq m$, there exists a graph $G$ with an associated monomial edge ideal $I$ having $\mathrm{v}$-number equal to $k$ and regularity $m$. If $2k \leq m$, then there exists a binomial edge ideal with $\mathrm{v}$-number $k$ and regularity $m$. Finally, we compute $\mathrm{v}$-number of powers of binomial edge ideals with linear resolution, thus proving a conjecture on the $\mathrm{v}$-number of powers of a graded ideal having linear powers, for the class of binomial edge ideals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. v𝑣vitalic_v-numbers of symbolic power filtrations. arXiv preprint arXiv:2403.09175, 2024.
  2. The vv\mathrm{v}roman_v-number of binomial edge ideals. to appear in Acta Math. Vietnam., arXiv:2304.06416, 2023.
  3. A study of v𝑣vitalic_v-number for some monomial ideals. arXiv preprint arXiv:2308.08604, 2023.
  4. Asymptotic behaviour and stability index of v-numbers of graded ideals. arXiv preprint arXiv:2402.16583, 2024.
  5. Cohen–Macaulay binomial edge ideals and accessible graphs. Journal of Algebraic Combinatorics, pages 1–32, 2021.
  6. On the binomial edge ideals of block graphs. Analele ştiinţifice ale Universităţii” Ovidius” Constanţa. Seria Matematică, 24(2):149–158, 2016.
  7. Yusuf Civan. The v𝑣vitalic_v-number and Castelnuovo-Mumford regularity of graphs. J. Algebraic Combin., 57(1):161–169, 2023.
  8. Aldo Conca. A note on the v𝑣vitalic_v-invariant. to appear in Proc. Amer. Math. Soc., arXiv:2401.00022, 2023.
  9. Generalized minimum distance functions and algebraic invariants of geramita ideals. Advances in Applied Mathematics, 112:101940, 2020.
  10. Generalized minimum distance functions and algebraic invariants of Geramita ideals. Adv. in Appl. Math., 112:101940, 34, 2020.
  11. Young diagrams and determinantal varieties. Inventiones Mathematicae, 56(2):129–165, 1980.
  12. Cohen-macaulay binomial edge ideals. Nagoya Mathematical Journal, 204:57–68, 2011.
  13. Powers of binomial edge ideals with quadratic Gröbner bases. Nagoya Math. J., 246:233–255, 2022.
  14. Antonino Ficarra. Simon conjecture and the v-number of monomial ideals. Collectanea Mathematica, 2024.
  15. Asymptotic behaviour of the v-number of homogeneous ideals. arXiv preprint arXiv:2306.14243, 2023.
  16. Asymptotic behaviour of integer programming and the v-function of a graded filtration. arXiv preprint arXiv:2403.08435, 2024.
  17. On the asymptotic behaviour of the vasconcelos invariant for graded modules. arXiv preprint arXiv:2401.16358, 2024.
  18. Binomial edge ideals and conditional independence statements. Advances in Applied Mathematics, 45(3):317–333, 2010.
  19. D. Jaramillo and R. H. Villarreal. The v-number of edge ideals. Journal of Combinatorial Theory, Series A, 177:Paper No. 105310, 35, 2021.
  20. Connected domination in graphs and v-numbers of binomial edge ideals. Collectanea Mathematica, 2023.
  21. Regularity of binomial edge ideals of certain block graphs. Proc. Indian Acad. Sci. Math. Sci., 129(3):Paper No. 36, 10, 2019.
  22. On the vv\mathrm{v}roman_v-number of gorenstein ideals and frobenius powers. arXiv preprint arXiv:2311.04136, 2023.
  23. The slope of v-function and waldschmidt constant. arXiv preprint arXiv:2404.00493, 2024.
  24. Regularity bounds for binomial edge ideals. Journal of Commutative Algebra, 5(1):141–149, 2013.
  25. Masahiro Ohtani. Graphs and ideals generated by some 2-minors. Communications in Algebra®, 39(3):905–917, 2011.
  26. Graph rings and ideals: Wolmer vasconcelos contributions. arXiv preprint arXiv:2305.06270, 2023.
  27. Construction of Cohen–Macaulay binomial edge ideals. Communications in Algebra, 42(1):238–252, 2014.
  28. Binomial edge ideals of graphs. Electronic journal of combinatorics, 19(2):Paper 44, 6, 2012.
  29. Kamalesh Saha. The v-number and castelnuovo-mumford regularity of cover ideals of graphs. International Mathematics Research Notices, page rnad277, 11 2023.
  30. The vv\mathrm{v}roman_v-number of monomial ideals. J. Algebraic Combin., 56(3):903–927, 2022.
  31. Xinxian Zheng. Resolutions of facet ideals. Comm. Algebra, 32(6):2301–2324, 2004.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: