Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval (2507.08945v1)

Published 11 Jul 2025 in cs.IR and cs.AI

Abstract: Conventional Retrieval Augmented Generation (RAG) approaches are common in text-based applications. However, they struggle with structured, interconnected datasets like knowledge graphs, where understanding underlying relationships is crucial for accurate retrieval. A common direction in graph-based retrieval employs iterative, rule-based traversal guided by LLMs. Such existing iterative methods typically combine reasoning with single hop traversal at each step, making them vulnerable to LLM reasoning errors and hallucinations that ultimately hinder the retrieval of relevant information. To address these limitations, we propose GraphRunner, a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution. This introduces high-level traversal actions that enable multi-hop exploration in a single step. It also generates a holistic traversal plan, which is verified against the graph structure and pre-defined traversal actions, reducing reasoning errors and detecting hallucinations before execution. GraphRunner significantly reduces LLM reasoning errors and detects hallucinations through validation. Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches, achieving 10-50% performance improvements over the strongest baseline while reducing inference cost by 3.0-12.9x and response generation time by 2.5-7.1x, making it significantly more robust and efficient for graph-based retrieval tasks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com