Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Is Your Prompt Safe? Investigating Prompt Injection Attacks Against Open-Source LLMs (2505.14368v1)

Published 20 May 2025 in cs.CR and cs.CL

Abstract: Recent studies demonstrate that LLMs are vulnerable to different prompt-based attacks, generating harmful content or sensitive information. Both closed-source and open-source LLMs are underinvestigated for these attacks. This paper studies effective prompt injection attacks against the $\mathbf{14}$ most popular open-source LLMs on five attack benchmarks. Current metrics only consider successful attacks, whereas our proposed Attack Success Probability (ASP) also captures uncertainty in the model's response, reflecting ambiguity in attack feasibility. By comprehensively analyzing the effectiveness of prompt injection attacks, we propose a simple and effective hypnotism attack; results show that this attack causes aligned LLMs, including Stablelm2, Mistral, Openchat, and Vicuna, to generate objectionable behaviors, achieving around $90$% ASP. They also indicate that our ignore prefix attacks can break all $\mathbf{14}$ open-source LLMs, achieving over $60$% ASP on a multi-categorical dataset. We find that moderately well-known LLMs exhibit higher vulnerability to prompt injection attacks, highlighting the need to raise public awareness and prioritize efficient mitigation strategies.

Summary

We haven't generated a summary for this paper yet.