Backdoor-Powered Prompt Injection Attacks Nullify Defense Methods (2510.03705v1)
Abstract: With the development of technology, LLMs have dominated the downstream NLP tasks. However, because of the LLMs' instruction-following abilities and inability to distinguish the instructions in the data content, such as web pages from search engines, the LLMs are vulnerable to prompt injection attacks. These attacks trick the LLMs into deviating from the original input instruction and executing the attackers' target instruction. Recently, various instruction hierarchy defense strategies are proposed to effectively defend against prompt injection attacks via fine-tuning. In this paper, we explore more vicious attacks that nullify the prompt injection defense methods, even the instruction hierarchy: backdoor-powered prompt injection attacks, where the attackers utilize the backdoor attack for prompt injection attack purposes. Specifically, the attackers poison the supervised fine-tuning samples and insert the backdoor into the model. Once the trigger is activated, the backdoored model executes the injected instruction surrounded by the trigger. We construct a benchmark for comprehensive evaluation. Our experiments demonstrate that backdoor-powered prompt injection attacks are more harmful than previous prompt injection attacks, nullifying existing prompt injection defense methods, even the instruction hierarchy techniques.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.