Breaking It Down: Domain-Aware Semantic Segmentation for Retrieval Augmented Generation (2512.00367v1)
Abstract: Document chunking is a crucial component of Retrieval-Augmented Generation (RAG), as it directly affects the retrieval of relevant and precise context. Conventional fixed-length and recursive splitters often produce arbitrary, incoherent segments that fail to preserve semantic structure. Although semantic chunking has gained traction, its influence on generation quality remains underexplored. This paper introduces two efficient semantic chunking methods, Projected Similarity Chunking (PSC) and Metric Fusion Chunking (MFC), trained on PubMed data using three different embedding models. We further present an evaluation framework that measures the effect of chunking on both retrieval and generation by augmenting PubMedQA with full-text PubMed Central articles. Our results show substantial retrieval improvements (24x with PSC) in MRR and higher Hits@k on PubMedQA. We provide a comprehensive analysis, including statistical significance and response-time comparisons with common chunking libraries. Despite being trained on a single domain, PSC and MFC also generalize well, achieving strong out-of-domain generation performance across multiple datasets. Overall, our findings confirm that our semantic chunkers, especially PSC, consistently deliver superior performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.