Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GalaxiesML: a dataset of galaxy images, photometry, redshifts, and structural parameters for machine learning (2410.00271v1)

Published 30 Sep 2024 in astro-ph.CO, astro-ph.IM, and cs.LG

Abstract: We present a dataset built for machine learning applications consisting of galaxy photometry, images, spectroscopic redshifts, and structural properties. This dataset comprises 286,401 galaxy images and photometry from the Hyper-Suprime-Cam Survey PDR2 in five imaging filters ($g,r,i,z,y$) with spectroscopically confirmed redshifts as ground truth. Such a dataset is important for machine learning applications because it is uniform, consistent, and has minimal outliers but still contains a realistic range of signal-to-noise ratios. We make this dataset public to help spur development of machine learning methods for the next generation of surveys such as Euclid and LSST. The aim of GalaxiesML is to provide a robust dataset that can be used not only for astrophysics but also for machine learning, where image properties cannot be validated by the human eye and are instead governed by physical laws. We describe the challenges associated with putting together a dataset from publicly available archives, including outlier rejection, duplication, establishing ground truths, and sample selection. This is one of the largest public machine learning-ready training sets of its kind with redshifts ranging from 0.01 to 4. The redshift distribution of this sample peaks at redshift of 1.5 and falls off rapidly beyond redshift 2.5. We also include an example application of this dataset for redshift estimation, demonstrating that using images for redshift estimation produces more accurate results compared to using photometry alone. For example, the bias in redshift estimate is a factor of 10 lower when using images between redshift of 0.1 to 1.25 compared to photometry alone. Results from dataset such as this will help inform us on how to best make use of data from the next generation of galaxy surveys.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.