Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using different sources of ground truths and transfer learning to improve the generalization of photometric redshift estimation (2411.18054v1)

Published 27 Nov 2024 in astro-ph.IM, astro-ph.GA, and cs.LG

Abstract: In this work, we explore methods to improve galaxy redshift predictions by combining different ground truths. Traditional machine learning models rely on training sets with known spectroscopic redshifts, which are precise but only represent a limited sample of galaxies. To make redshift models more generalizable to the broader galaxy population, we investigate transfer learning and directly combining ground truth redshifts derived from photometry and spectroscopy. We use the COSMOS2020 survey to create a dataset, TransferZ, which includes photometric redshift estimates derived from up to 35 imaging filters using template fitting. This dataset spans a wider range of galaxy types and colors compared to spectroscopic samples, though its redshift estimates are less accurate. We first train a base neural network on TransferZ and then refine it using transfer learning on a dataset of galaxies with more precise spectroscopic redshifts (GalaxiesML). In addition, we train a neural network on a combined dataset of TransferZ and GalaxiesML. Both methods reduce bias by $\sim$ 5x, RMS error by $\sim$ 1.5x, and catastrophic outlier rates by 1.3x on GalaxiesML, compared to a baseline trained only on TransferZ. However, we also find a reduction in performance for RMS and bias when evaluated on TransferZ data. Overall, our results demonstrate these approaches can meet cosmological requirements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.