Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dual Invertible Polynomials with Permutation Symmetries and the Orbifold Euler Characteristic (1907.11421v2)

Published 26 Jul 2019 in math.AG and math.GT

Abstract: P. Berglund, T. H\"ubsch, and M. Henningson proposed a method to construct mirror symmetric Calabi-Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal symmetries and some permutations of variables. In a previous paper, we explained that this construction should work only under a special condition on the permutation group called parity condition (PC). Here we prove that, if the permutation group is cyclic and satisfies PC, then the reduced orbifold Euler characteristics of the Milnor fibres of dual pairs coincide up to sign.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.