Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Orbifold E-functions of dual invertible polynomials (1509.04101v1)

Published 14 Sep 2015 in math.AG

Abstract: An invertible polynomial is a quasihomogeneous polynomial with the number of monomials coinciding with the number of variables and such that the weights of the variables and the quasi-degree are well defined. In the framework of the search for mirror symmetric orbifold Landau-Ginzburg models, P.~Berglund and M.~Henningson considered a pair $(f,G)$ consisting of an invertible polynomial $f$ and an abelian group $G$ of its symmetries together with a dual pair $(\widetilde{f}, \widetilde{G})$. We consider the so-called orbifold E-function of such a pair $(f,G)$ which is a generating function for the exponents of the monodromy action on an orbifold version of the mixed Hodge structure on the Milnor fibre of $f$. We prove that the orbifold E-functions of Berglund-Henningson dual pairs coincide up to a sign depending on the number of variables. The proof is based on a relation between monomials (say, elements of a monomial basis of the Milnor algebra of an invertible polynomial) and elements of the whole symmetry group of the dual polynomial.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.