Mazur’s refined question on the order of S_{α,β,γ}(X) when α+β+γ>1
Determine whether S_{α,β,γ}(X), the number of coprime triples (a, b, c) with a + b = c, a, b, c ∈ [1, X], and radical constraints rad(a) ≤ a^α, rad(b) ≤ b^β, rad(c) ≤ c^γ for fixed α, β, γ ∈ (0,1], has order X^{α+β+γ−1} whenever α + β + γ > 1.
References
Mazur then asks whether S α,β,γ(X) has order X α+β+γ−1 if α + β + γ > 1.
                — Bounds on the exceptional set in the $abc$ conjecture
                
                (2410.12234 - Browning et al., 16 Oct 2024) in Section 1. Introduction