2000 character limit reached
    
  Construction of Arithmetic Teichmuller Spaces IV: Proof of the abc-conjecture (2403.10430v2)
    Published 15 Mar 2024 in math.AG and math.NT
  
  Abstract: This is a continuation of my work on Arithmetic Teichmuller Spaces developed in the present series of papers. In this paper, I show that the Theory of Arithmetic Teichmuller Spaces leads, using Shinichi Mochizuki's rubric, to a proof of the $abc$-conjecture (as asserted by Mochizuki).
- Symplectic Lefschetz fibrations with arbitrary fundamental groups. J. Differential Geom., 54(3):489–545, 2000. URL http://projecteuclid.org/euclid.jdg/1214339791. With an appendix by Ivan Smith.
- Yves André. On a geometric description of Gal(ℚ¯p/ℚp)Galsubscript¯ℚ𝑝subscriptℚ𝑝{\rm Gal}({{\bar{{\mathbb{Q}}}}}_{p}/{{\mathbb{Q}}}_{p})roman_Gal ( over¯ start_ARG blackboard_Q end_ARG start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT / blackboard_Q start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) and a p𝑝pitalic_p-adic avatar of GT^^𝐺𝑇\widehat{GT}over^ start_ARG italic_G italic_T end_ARG. Duke Math. Journal, 119(1):1–39, 2003.
- Arnaud Beauville. The Szpiro inequality for higher genus fibrations. In Algebraic geometry, pages 61–63. de Gruyter, Berlin, 2002.
- Heights in diophantine geometry. Cambridge University Press, Cambridge, UK ; New York, 2006.
- Probabilistic Szpiro, Baby Szpiro, and Explicit Szpiro from Mochizuki’s corollary 3.12. arXiv preprint arXiv:2004.13108, 2020. URL https://arxiv.org/abs/2004.13108.
- Pierre Dusart. Explicit estimates of some functions over primes. The Ramanujan Journal, 45:227–251, 2016. doi: https://doi.org/10.1007/s11139-016-9839-4.
- Noam D Elkies. Abc implies mordell. International Mathematics Research Notices, 1991(7):99–109, 1991. doi: 10.1155/S1073792891000144.
- Gerd Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73(3):349–366, 1983. URL https://doi.org/10.1007/BF01388432.
- Kirti Joshi. On Mochizuki’s idea of anabelomorphy and applications. 2020. URL https://arxiv.org/abs/2003.01890.
- Kirti Joshi. Construction of Arithmetic Teichmuller Spaces and applications. 2021. URL https://arxiv.org/abs/2106.11452.
- Kirti Joshi. Untilts of fundamental groups: construction of labeled isomorphs of fundamental groups (Arithmetic Holomorphic Structures). 2022. URL https://arxiv.org/abs/2210.11635.
- Kirti Joshi. Construction of Arithmetic Teichmuller Spaces II(12)12(\frac{1}{2})( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ): Deformations of Number Fields. 2023a. URL https://arxiv.org/abs/2305.10398.
- Kirti Joshi. Construction of Arithmetic Teichmuller Spaces and some applications II: Proof a local prototype of Mochizuki’s Corollary 3.12. 2023b. URL https://arxiv.org/abs/2303.01662.
- Kirti Joshi. Construction of Arithmetic Teichmuller Spaces and applications III: A proof of Mochizuki’s corollary 3.12 and a Rosetta Stone. Available at arxiv.org, 2023c.
- Kirti Joshi. Untilts of fundamental groups: construction of labeled isomorphs of fundamental groups (2020 version). October 2020. URL https://arxiv.org/abs/2010.05748.
- Minhyong Kim. Geometric height inequalities and the Kodaira-Spencer map. Compositio Math., 105(1):43–54, 1997.
- Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002. URL https://doi.org/10.1007/978-1-4613-0041-0.
- D. W. Masser. Note on a conjecture of Szpiro. Number 183, pages 19–23. 1990. Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988).
- Maryam Mirzakhani. Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math., 167:179–222, 2007. doi: https://doi.org/10.1007/s00222-006-0013-2.
- Shinichi Mochizuki. A version of the Grothendieck conjecture for p𝑝pitalic_p-adic local fields. International Journal of Math., 8:499–506, 1997. URL http://www.kurims.kyoto-u.ac.jp/~motizuki/A%20Version%20of%20the%20Grothendieck%20Conjecture%20for%20p-adic%20Local%20Fields.pdf.
- Shinichi Mochizuki. Arithmetic elliptic curves in general position. Math. J. Okayama Univ., 52:1–28, 2010. ISSN 0030-1566.
- Shinichi Mochizuki. Topics in absolute anabelian geometry I: generalities. J. Math. Sci. Univ. Tokyo, 19(2):139–242, 2012.
- Shinichi Mochizuki. Topics in absolute anabelian geometry II: decomposition groups and endomorphisms. J. Math. Sci. Univ. Tokyo, 20(2):171–269, 2013.
- Shinichi Mochizuki. Topics in absolute anabelian geometry III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo, 22(4):939–1156, 2015.
- Shinichi Mochizuki. Bogomolov’s proof of the geometric version of the Szpiro conjecture from the point of view of Inter-Universal Teichmuller Theory. 2016.
- Shinichi Mochizuki. Inter-Universal Teichmuller theory I: construction of Hodge Theaters. Publ. Res. Inst. Math. Sci., 57(1/2):3–207, 2021a. URL https://ems.press/journals/prims/articles/201525.
- Shinichi Mochizuki. Inter-Universal Teichmuller Theory II: Hodge-Arakelov Theoretic Evaluations. Publ. Res. Inst. Math. Sci., 57(1/2):209–401, 2021b. URL https://ems.press/journals/prims/articles/201526.
- Shinichi Mochizuki. Inter-Universal Teichmuller Theory III: canonical splittings of the log-theta lattice. Publ. Res. Inst. Math. Sci., 57(1/2):403–626, 2021c. URL https://ems.press/journals/prims/articles/201527.
- Shinichi Mochizuki. Inter-Universal Teichmuller Theory IV: Log-volume computations and set theoretic foundations. Publ. Res. Inst. Math. Sci., 57(1/2):627–723, 2021d. URL https://ems.press/journals/prims/articles/201528.
- J. Oesterle. Nouvelles approches du “théorème” de Fermat. Asterisque, 161:165–186, 1988.
- J.-P. Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer, Berlin, Springer-Verlag, 1979.
- Joseph Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Text in Mathematics. Springer-Verlag, Berlin, 1985.
- Joseph H. Silverman. The Theory of Height Functions, page 151–166. Springer New York, New York, NY, 1986. doi: 10.1007/978-1-4613-8655-1˙6.
- C. L. Stewart and R. Tijdeman. On the Oesterlé-Masser conjecture. Monatsh. Math., 102(3):251–257, 1986. URL https://doi.org/10.1007/BF01294603.
- L. Szpiro. Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque, 86, 1981.
- Lucien Szpiro. Lectures on equations defining space curves (Notes by N. Mohan Kumar). Tata Institute of Fundamental Research; Narosa Pub. House, Bombay, New Delhi, 1979.
- Lucien Szpiro. Discriminant et conducteur des courbes elliptiques, in sḿinaire sur les pinceaux de courbes elliptiques (à la recherche de mordell effectif),. Astérisque, no. 183 (1990), pp. 7-18, 183:7–18, 1990. URL http://www.numdam.org/item/AST_1990__183__7_0/.
- Fucheng Tan. Note on Inter-Universal Teichmuller Theory. 2018.
- Machiel van Frankenhuysen. The abc conjecture implies vojta’s height inequality for curves. Journal of number theory, 95(2):289–302, 2002. doi: 10.1016/S0022-314X(01)92769-6.
- Paul Vojta. A more general abc conjecture. International Mathematics Research Notices, 1998(21):1103–1116, 1998. doi: 10.1155/S1073792898000658.
- Alex Wright. A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces, 2019. URL https://arxiv.org/abs/1905.01753.
- Go Yamashita. A proof of the abc-conjecture. RIMS–Kokyuroku Bessatsu, 2019.
- Shouwu Zhang. Geometry of algebraic points. In First International Congress of Chinese Mathematicians (Beijing, 1998), volume 20 of AMS/IP Stud. Adv. Math., pages 185–198. Amer. Math. Soc., Providence, RI, 2001. URL https://doi.org/10.2298/pim140921001z.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.