Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Helix Parallelism: Rethinking Sharding Strategies for Interactive Multi-Million-Token LLM Decoding (2507.07120v1)

Published 7 Jul 2025 in cs.DC and cs.AI

Abstract: As LLMs scale to multi-million-token KV histories, real-time autoregressive decoding under tight Token-to-Token Latency (TTL) constraints faces growing pressure. Two core bottlenecks dominate: accessing Feed-Forward Network (FFN) weights and reading long KV caches. While Tensor Parallelism (TP) helps mitigate the cost of FFN weight reads, it does not scale well for attention. When TP width exceeds the number of KV heads, it leads to inefficient KV duplication, limits parallelism, and constrains batch size. Simultaneously, DRAM reads for long KV histories scale linearly with batch size, further capping efficiency. We introduce Helix Parallelism, a hybrid execution strategy that applies KV parallelism during attention to shard KV caches across GPUs, then reuses the same GPUs for TP in dense LLMs or TPxExpert Parallel (EP) in MoEs during FFN computation. To preserve exact attention behavior, Helix includes a lightweight communication step. To minimize the exposed communication cost, we introduce Helix HOP-B. Helix HOP-B effectively minimizes communication overhead through batchwise overlap, preserving low TTL while improving GPU efficiency. Compared to conventional parallelism approaches, Helix reduces TTL by up to 1.5x at fixed batch sizes and supports up to 32x larger batches under the same latency budget for DeepSeek-R1, pushing forward the throughput-latency Pareto on Blackwell and making real-time inference with ultra-long-sequence practical.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 431 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube