Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning Skills of LLMs (2303.12810v1)

Published 22 Mar 2023 in cs.CL and cs.AI

Abstract: The potential of LLMs to reason like humans has been a highly contested topic in Machine Learning communities. However, the reasoning abilities of humans are multifaceted and can be seen in various forms, including analogical, spatial and moral reasoning, among others. This fact raises the question whether LLMs can perform equally well across all these different domains. This research work aims to investigate the performance of LLMs on different reasoning tasks by conducting experiments that directly use or draw inspirations from existing datasets on analogical and spatial reasoning. Additionally, to evaluate the ability of LLMs to reason like human, their performance is evaluted on more open-ended, natural language questions. My findings indicate that LLMs excel at analogical and moral reasoning, yet struggle to perform as proficiently on spatial reasoning tasks. I believe these experiments are crucial for informing the future development of LLMs, particularly in contexts that require diverse reasoning proficiencies. By shedding light on the reasoning abilities of LLMs, this study aims to push forward our understanding of how they can better emulate the cognitive abilities of humans.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Shrivats Agrawal (3 papers)
Citations (5)