Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

An Iteratively Reweighted Least Squares Algorithm for Sparse Regularization (1511.08970v3)

Published 29 Nov 2015 in math.NA

Abstract: We present a new algorithm and the corresponding convergence analysis for the regularization of linear inverse problems with sparsity constraints, applied to a new generalized sparsity promoting functional. The algorithm is based on the idea of iteratively reweighted least squares, reducing the minimization at every iteration step to that of a functional including only $\ell_2$-norms. This amounts to smoothing of the absolute value function that appears in the generalized sparsity promoting penalty we consider, with the smoothing becoming iteratively less pronounced. We demonstrate that the sequence of iterates of our algorithm converges to a limit that minimizes the original functional.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube