Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Doubly iteratively reweighted algorithm for constrained compressed sensing models (2206.08205v1)

Published 16 Jun 2022 in math.OC

Abstract: We propose a new algorithmic framework for constrained compressed sensing models that admit nonconvex sparsity-inducing regularizers including the log-penalty function as objectives, and nonconvex loss functions such as the Cauchy loss function and the Tukey biweight loss function in the constraint. Our framework employs iteratively reweighted $\ell_1$ and $\ell_2$ schemes to construct subproblems that can be efficiently solved by well-developed solvers for basis pursuit denoising such as SPGL1 [6]. We propose a new termination criterion for the subproblem solvers that allows them to return an infeasible solution, with a suitably constructed feasible point satisfying a descent condition. The feasible point construction step is the key for establishing the well-definedness of our proposed algorithm, and we also prove that any accumulation point of this sequence of feasible points is a stationary point of the constrained compressed sensing model, under suitable assumptions. Finally, we compare numerically our algorithm (with subproblems solved by SPGL1 or the alternating direction method of multipliers) against the SCP$_{\rm ls}$ in [41] on solving constrained compressed sensing models with the log-penalty function as the objective and the Cauchy loss function in the constraint, for badly-scaled measurement matrices. Our computational results show that our approaches return solutions with better recovery errors, and are always faster.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube