Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iteratively Reweighted $\ell_1$ Approaches to Sparse Composite Regularization (1504.05110v4)

Published 20 Apr 2015 in cs.IT and math.IT

Abstract: Motivated by the observation that a given signal $\boldsymbol{x}$ admits sparse representations in multiple dictionaries $\boldsymbol{\Psi}_d$ but with varying levels of sparsity across dictionaries, we propose two new algorithms for the reconstruction of (approximately) sparse signals from noisy linear measurements. Our first algorithm, Co-L1, extends the well-known lasso algorithm from the L1 regularizer $|\boldsymbol{\Psi x}|_1$ to composite regularizers of the form $\sum_d \lambda_d |\boldsymbol{\Psi}_d \boldsymbol{x}|_1$ while self-adjusting the regularization weights $\lambda_d$. Our second algorithm, Co-IRW-L1, extends the well-known iteratively reweighted L1 algorithm to the same family of composite regularizers. We provide several interpretations of both algorithms: i) majorization-minimization (MM) applied to a non-convex log-sum-type penalty, ii) MM applied to an approximate $\ell_0$-type penalty, iii) MM applied to Bayesian MAP inference under a particular hierarchical prior, and iv) variational expectation-maximization (VEM) under a particular prior with deterministic unknown parameters. A detailed numerical study suggests that our proposed algorithms yield significantly improved recovery SNR when compared to their non-composite L1 and IRW-L1 counterparts.

Citations (56)

Summary

We haven't generated a summary for this paper yet.