Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reduced-Space Iteratively Reweighted Second-Order Methods for Nonconvex Sparse Regularization (2407.17216v3)

Published 24 Jul 2024 in math.OC and cs.LG

Abstract: This paper explores a specific type of nonconvex sparsity-promoting regularization problems, namely those involving $\ell_p$-norm regularization, in conjunction with a twice continuously differentiable loss function. We propose a novel second-order algorithm designed to effectively address this class of challenging nonconvex and nonsmooth problems, showcasing several innovative features: (i) The use of an alternating strategy to solve a reweighted $\ell_1$ regularized subproblem and the subspace approximate Newton step. (ii) The reweighted $\ell_1$ regularized subproblem relies on a convex approximation to the nonconvex regularization term, enabling a closed-form solution characterized by the soft-thresholding operator. This feature allows our method to be applied to various nonconvex regularization problems. (iii) Our algorithm ensures that the iterates maintain their sign values and that nonzero components are kept away from 0 for a sufficient number of iterations, eventually transitioning to a perturbed Newton method. (iv) We provide theoretical guarantees of global convergence, local superlinear convergence in the presence of the Kurdyka-\L ojasiewicz (KL) property, and local quadratic convergence when employing the exact Newton step in our algorithm. We also showcase the effectiveness of our approach through experiments on a diverse set of model prediction problems.

Summary

We haven't generated a summary for this paper yet.