Papers
Topics
Authors
Recent
2000 character limit reached

Graphene Superconducting Quantum Circuits

Updated 26 December 2025
  • Graphene-based superconducting quantum circuits are systems integrating graphene Josephson junctions into cQED setups for electrical tunability and multi-modality.
  • They employ diverse device architectures—including transmons, SQUIDs, and parametric amplifiers—enabling gate-controlled qubit dynamics and improved coherence.
  • Recent designs demonstrate enhanced tunability, noise suppression, and scalability, paving the way for topological and hybrid quantum computing applications.

Graphene-based superconducting quantum circuits integrate graphene Josephson junctions (JJs) or van der Waals heterostructures into superconducting circuit quantum electrodynamics (cQED) architectures, supporting functionalities from gate-tunable transmons and SQUIDs to parametric amplifiers and charge-spin qubit buses. The unique material properties of graphene and its heterostructures—high mobility, atomic thickness, ballistic Dirac transport, tunable critical current densities, and compatibility with high magnetic fields—enable quantum circuits with electrical tunability, multi-modality, and, in certain designs, topological non-triviality.

1. Device Architectures and Material Platforms

Graphene-based superconducting quantum circuits employ a range of device geometries and materials integration strategies:

Fabrication involves van der Waals assembly (polymer-free dry transfer for high-mobility stacks), precise electron-beam lithography for mesa and gate patterning, and optimized edge-contact formation to maximize transparency and uniformity (Chiu et al., 24 Dec 2025, Generalov et al., 10 Jan 2024). Large-scale integration is demonstrated with wafer-scale CMOS-compatible processing (Generalov et al., 10 Jan 2024).

2. Circuit Hamiltonians, Coupling Regimes, and Gate Control

  • Single-Qubit Jaynes–Cummings Model: The fundamental Hamiltonian for a transmon-type circuit is:

H^=ωra^a^+ωq2σ^z+g(a^σ^++a^σ^)\hat{H} = \hbar\omega_r \hat{a}^\dagger \hat{a} + \frac{\hbar\omega_q}{2}\hat{\sigma}_z + \hbar g(\hat{a}\hat{\sigma}_+ + \hat{a}^\dagger\hat{\sigma}_-)

where ωr\omega_r is the cavity frequency, ωq8EJEC/\omega_q \approx \sqrt{8E_JE_C}/\hbar the qubit frequency, gg the qubit-cavity coupling. Gate and flux tunability enter via EJE_J (through IcI_c), allowing dynamic control of ωq\omega_q and system detuning (Chiu et al., 24 Dec 2025, Aparicio et al., 5 Jun 2025).

  • Two-Qubit and Multi-Element Hamiltonians: For multi-qubit circuits, a sum over qubit–cavity and inter-qubit terms is included, with capacitive or direct inter-qubit coupling JJ tunable via device capacitances and weak-link properties (Chiu et al., 24 Dec 2025). Bilayer graphene charge qubits dipole-coupled to high-impedance microwave resonators are modeled by Jaynes–Cummings and input–output theory, fully quantified in the dispersive and resonant regimes (Ruckriegel et al., 2023).
  • Andreev Bound State (ABS) Description: High-transparency gJJs are accurately described as superconducting quantum point contacts (S-QPC) with N channels of transmission τ\tau, yielding ABSs at E±(φ)=±Δ1τsin2(φ/2)E_{\pm}(\varphi) = \pm\Delta\sqrt{1-\tau\sin^2(\varphi/2)} and a Josephson potential with gate-dependent EJ(Vg)E_J(V_g) (Aparicio et al., 5 Jun 2025).
  • Electrical and Flux Tunability: Critical current IcI_c and thus EJE_J are tuned continuously with gate voltage, shifting qubit frequency and spectrum (3–9 GHz typical range over a <1 V gate span) (Aparicio et al., 5 Jun 2025, Chiu et al., 24 Dec 2025). SQUID geometries enable magnetic flux control of EJE_J via interference (Chiu et al., 24 Dec 2025, Chiu et al., 2023). JoFETs fabricated at wafer scale show ICI_C tunable over orders of magnitude by VtgV_{tg}, on/off ratios > 20 (Generalov et al., 10 Jan 2024).

3. Coherence, Loss Mechanisms, and Figures of Merit

  • Coherence Times: Coherence times in 3D cavity graphene transmons are currently T148T_1\approx 48 ns, T218T_2^*\approx 18 ns (Chiu et al., 24 Dec 2025); planar devices achieve T1=716T_1=716 ns, T2=62T_2^*=62 ns at optimal bias (Aparicio et al., 5 Jun 2025). Shorter coherence (e.g., T112T_1\approx 12–36 ns (Wang et al., 2018), T22T_2^*\approx 2–3 ns (Kroll et al., 2018)) is associated with charge noise, low-frequency flux noise, and dielectric losses, often away from the sweet spot or in earlier generations.
  • Loss Mechanisms: Dissipation is traced to subgap Andreev bound states, charge-trap and dielectric loss (e.g., at the SiO₂ substrate or in high-κ gate oxides), and imperfect S–N interfaces. The measured subgap resistance RsgR_{sg} is in the 1\sim1 kΩ\Omega range, with Rsg/Rn10R_{sg}/R_n \sim 10–40 (Schmidt et al., 2018). The use of hBN encapsulation, optimization of interface transparency, and improved filtering, as well as the implementation of high-Q 3D cavities, are effective in mitigating losses (Chiu et al., 24 Dec 2025, Aparicio et al., 5 Jun 2025).
  • Charge Dispersion and Anharmonicity: High-transmission (τ1\tau\to1) in short gJJs strongly suppresses charge dispersion compared to standard tunnel junctions, offering a strategy to approach both low charge noise sensitivity and large anharmonicity, suitable for advanced transmon and hybrid-transmon designs (Aparicio et al., 5 Jun 2025).

4. Quantum Circuit Modalities and Functionality

  • Transmons and Gatemons: Gate-tunable transmons ("gatemons") are now robustly realized with graphene JJs as the nonlinear element; their transition frequencies, anharmonicities, and charge dispersion are all electrical-field-tunable (Chiu et al., 24 Dec 2025, Kroll et al., 2018, Aparicio et al., 5 Jun 2025).
  • SQUIDs and Multi-Qubit Architectures: 3D cavity integration of devices with parallel JJs enables flux-tunable qubits (via symmetric and asymmetric SQUID designs), as well as two-qubit and scaling toward multi-qubit architectures with joint or individual readout (Chiu et al., 24 Dec 2025, Chiu et al., 2023, Indolese et al., 2020).
  • Parametric Amplifiers: Fully gate-tunable Josephson parametric amplifiers (JPAs) based on graphene weak links achieve >20>20 dB gain, quantum-limited noise, and frequency tunability of over 1 GHz without the crosstalk or flux-hysteresis issues of SQUID-based JPAs (Butseraen et al., 2022).
  • Charge-Spin Qubit Coupling: Dipole coupling of bilayer graphene double quantum dots to high-impedance microwave resonators reaches g/2π50g/2\pi\approx50 MHz; dispersive charge sensing is achieved with state-of-the-art speed and SNR for graphene quantum-dot platforms (Ruckriegel et al., 2023).

5. Gate-Tunability and High Magnetic Field Operation

  • Gate Control: Graphene-based circuits provide in-situ, all-electrical control over Josephson energy and transitions, enabling "fluxless" frequency tunability, fast real-time parameter modulation (timescales 100\sim 100 ns), and programmable coupling networks for advanced logic and coupling schemes (Aparicio et al., 5 Jun 2025, Chiu et al., 24 Dec 2025).
  • Magnetic Field Resilience: Unlike conventional Al/AlOₓ JJs (limited to <10<10 mT), graphene JJs in NbTiN or MoRe circuits maintain functional qubit operation up to at least 1 T, a prerequisite for integration with topological systems (e.g., Majorana platforms) and for study of hybrid quantum Hall–superconductor physics (Kroll et al., 2018, Indolese et al., 2020).

6. Scalability, Integration Challenges, and Outlook

  • CMOS and Wafer-Scale Integration: Fully lithographic, large-area transfer processes for CVD graphene, in combination with encapsulation and standard ALD dielectrics, have demonstrated >90% device yield at 150 mm wafer scale (Generalov et al., 10 Jan 2024), supporting practical routes to integration with established superconducting circuit foundry processes.
  • Superconducting Atomic Layer Hybrids: 2D superconductors (e.g., 2D-Ga under graphene) offer air-stable, atomically-thin superconducting circuit elements with Tc4T_c\sim4 K, coherence length ξ(0)36\xi(0)\sim 36 nm and critical fields Bc2(0)260B_{c2}(0) \sim 260 mT, with direct patternability for circuit definition (Bersch et al., 2019).
  • Topological and Hybrid Functionality: Compact double-layer graphene SQUIDs with independent gating are a tunable platform for engineering topological superconductivity via coupling to helical edge states in the quantum Hall regime. Achieving interlayer spacing dgg<ξSd_{gg} < \xi_S, good layer alignment, and phase-bias control are identified as essential for realizing Majorana zero modes and topological qubits (Indolese et al., 2020).

Advancements in device uniformity, interface transparency, noise suppression, and coherence engineering are prioritized for bringing graphene-based superconducting quantum circuits to parity with state-of-the-art Al/AlOₓ systems, opening new regimes of in situ control, multi-qubit scaling, and hybrid material platforms (Chiu et al., 24 Dec 2025, Aparicio et al., 5 Jun 2025).

Whiteboard

Topic to Video (Beta)

Follow Topic

Get notified by email when new papers are published related to Graphene-Based Superconducting Quantum Circuits.