Papers
Topics
Authors
Recent
2000 character limit reached

XGrammar 2: Dynamic and Efficient Structured Generation Engine for Agentic LLMs

Published 7 Jan 2026 in cs.AI | (2601.04426v1)

Abstract: Modern LLM agents are required to handle increasingly complex structured generation tasks, such as tool calling and conditional structured generation. These tasks are significantly more dynamic than predefined structures, posing new challenges to the current structured generation engines. In this paper, we propose XGrammar 2, a highly optimized structured generation engine for agentic LLMs. XGrammar 2 accelerates the mask generation for these dynamic structured generation tasks through a new dynamic dispatching semantics: TagDispatch. We further introduce a just-in-time (JIT) compilation method to reduce compilation time and a cross-grammar caching mechanism to leverage the common sub-structures across different grammars. Additionally, we extend the previous PDA-based mask generation algorithm to the Earley-parser-based one and design a repetition compression algorithm to handle repetition structures in grammars. Evaluation results show that XGrammar 2 can achieve more than 6x speedup over the existing structured generation engines. Integrated with an LLM inference engine, XGrammar 2 can handle dynamic structured generation tasks with near-zero overhead.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.