Papers
Topics
Authors
Recent
2000 character limit reached

NMPC-Augmented Visual Navigation and Safe Learning Control for Large-Scale Mobile Robots

Published 2 Jan 2026 in cs.RO and eess.SY | (2601.00609v1)

Abstract: A large-scale mobile robot (LSMR) is a high-order multibody system that often operates on loose, unconsolidated terrain, which reduces traction. This paper presents a comprehensive navigation and control framework for an LSMR that ensures stability and safety-defined performance, delivering robust operation on slip-prone terrain by jointly leveraging high-performance techniques. The proposed architecture comprises four main modules: (1) a visual pose-estimation module that fuses onboard sensors and stereo cameras to provide an accurate, low-latency robot pose, (2) a high-level nonlinear model predictive control that updates the wheel motion commands to correct robot drift from the robot reference pose on slip-prone terrain, (3) a low-level deep neural network control policy that approximates the complex behavior of the wheel-driven actuation mechanism in LSMRs, augmented with robust adaptive control to handle out-of-distribution disturbances, ensuring that the wheels accurately track the updated commands issued by high-level control module, and (4) a logarithmic safety module to monitor the entire robot stack and guarantees safe operation. The proposed low-level control framework guarantees uniform exponential stability of the actuation subsystem, while the safety module ensures the whole system-level safety during operation. Comparative experiments on a 6,000 kg LSMR actuated by two complex electro-hydrostatic drives, while synchronizing modules operating at different frequencies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.