Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Textual Compositional Reasoning for Robust Change Captioning (2511.22903v1)

Published 28 Nov 2025 in cs.CV and cs.AI

Abstract: Change captioning aims to describe changes between a pair of images. However, existing works rely on visual features alone, which often fail to capture subtle but meaningful changes because they lack the ability to represent explicitly structured information such as object relationships and compositional semantics. To alleviate this, we present CORTEX (COmpositional Reasoning-aware TEXt-guided), a novel framework that integrates complementary textual cues to enhance change understanding. In addition to capturing cues from pixel-level differences, CORTEX utilizes scene-level textual knowledge provided by Vision LLMs (VLMs) to extract richer image text signals that reveal underlying compositional reasoning. CORTEX consists of three key modules: (i) an Image-level Change Detector that identifies low-level visual differences between paired images, (ii) a Reasoning-aware Text Extraction (RTE) module that use VLMs to generate compositional reasoning descriptions implicit in visual features, and (iii) an Image-Text Dual Alignment (ITDA) module that aligns visual and textual features for fine-grained relational reasoning. This enables CORTEX to reason over visual and textual features and capture changes that are otherwise ambiguous in visual features alone.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.