Leveraging Textual Compositional Reasoning for Robust Change Captioning (2511.22903v1)
Abstract: Change captioning aims to describe changes between a pair of images. However, existing works rely on visual features alone, which often fail to capture subtle but meaningful changes because they lack the ability to represent explicitly structured information such as object relationships and compositional semantics. To alleviate this, we present CORTEX (COmpositional Reasoning-aware TEXt-guided), a novel framework that integrates complementary textual cues to enhance change understanding. In addition to capturing cues from pixel-level differences, CORTEX utilizes scene-level textual knowledge provided by Vision LLMs (VLMs) to extract richer image text signals that reveal underlying compositional reasoning. CORTEX consists of three key modules: (i) an Image-level Change Detector that identifies low-level visual differences between paired images, (ii) a Reasoning-aware Text Extraction (RTE) module that use VLMs to generate compositional reasoning descriptions implicit in visual features, and (iii) an Image-Text Dual Alignment (ITDA) module that aligns visual and textual features for fine-grained relational reasoning. This enables CORTEX to reason over visual and textual features and capture changes that are otherwise ambiguous in visual features alone.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.