AnchorOPT: Towards Optimizing Dynamic Anchors for Adaptive Prompt Learning (2511.21188v1)
Abstract: Existing prompt learning methods, which are built upon CLIP models, leverage textual tokens as anchors to guide the learnable soft tokens. This guidance improves CLIP generalizations. However, these anchors-static in both value and position-lack cross-task and stage-adaptive flexibility. To address this limitation, we propose AnchorOPT, a dynamic anchor-based prompt learning framework. Specifically, AnchorOPT introduces dynamism in two key dimensions: (i) anchor values eschew handcrafted explicit textual tokens (e.g., "shape", "color"), instead learning dynamically from task-specific data; and (ii) the positional relationship between anchor and soft tokens is no longer fixed but adaptively optimized via a learnable position matrix conditioned on the training stage and task context. Training occurs in two stages: we first learn the anchor tokens, then freeze and transfer them to the second stage for optimization of soft tokens and the position matrix. Extensive experiments demonstrate that using only a simple learnable anchor and position matrix achieves performance comparable to or exceeding some methods incorporating additional learnable modules or regularization techniques. As a plug-and-play module, AnchorOPT integrates seamlessly into existing frameworks, yielding consistent performance gains across diverse datasets. Code is publicly available at https://github.com/zhengli97/ATPrompt.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.