Online Adaptive Probabilistic Safety Certificate with Language Guidance (2511.12431v1)
Abstract: Achieving long-term safety in uncertain or extreme environments while accounting for human preferences remains a fundamental challenge for autonomous systems. Existing methods often trade off long-term guarantees for fast real-time control and cannot adapt to variability in human preferences or risk tolerance. To address these limitations, we propose a language-guided adaptive probabilistic safety certificate (PSC) framework that guarantees long-term safety for stochastic systems under environmental uncertainty while accommodating diverse human preferences. The proposed framework integrates natural-language inputs from users and Bayesian estimators of the environment into adaptive safety certificates that explicitly account for user preferences, system dynamics, and quantified uncertainties. Our key technical innovation leverages probabilistic invariance--a generalization of forward invariance to a probability space--to obtain myopic safety conditions with long-term safety guarantees that integrate language guidance, model information, and quantified uncertainty. We validate the framework through numerical simulations of autonomous lane-keeping with human-in-the-loop guidance under uncertain and extreme road conditions, demonstrating enhanced safety-performance trade-offs, adaptability to changing environments, and personalization to different user preferences.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.