Papers
Topics
Authors
Recent
2000 character limit reached

STARS: Segment-level Token Alignment with Rejection Sampling in Large Language Models (2511.03827v1)

Published 5 Nov 2025 in cs.CL

Abstract: Aligning LLMs with human values is crucial for their safe deployment; however, existing methods, such as fine-tuning, are computationally expensive and suboptimal. In contrast, inference-time approaches like Best-of-N sampling require practically infeasible computation to achieve optimal alignment. We propose STARS: Segment-level Token Alignment with Rejection Sampling, a decoding-time algorithm that steers model generation by iteratively sampling, scoring, and rejecting/accepting short, fixed-size token segments. This allows for early correction of the generation path, significantly improving computational efficiency and boosting alignment quality. Across a suite of six LLMs, we show that STARS outperforms Supervised Fine-Tuning (SFT) by up to 14.9 percentage points and Direct Preference Optimization (DPO) by up to 4.3 percentage points on win-rates, while remaining highly competitive with strong Best-of-N baselines. Our work establishes granular, reward-guided sampling as a generalizable, robust, and efficient alternative to traditional fine-tuning and full-sequence ranking methods for aligning LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.