Streaming Generation for Music Accompaniment (2510.22105v1)
Abstract: Music generation models can produce high-fidelity coherent accompaniment given complete audio input, but are limited to editing and loop-based workflows. We study real-time audio-to-audio accompaniment: as a model hears an input audio stream (e.g., a singer singing), it has to also simultaneously generate in real-time a coherent accompanying stream (e.g., a guitar accompaniment). In this work, we propose a model design considering inevitable system delays in practical deployment with two design variables: future visibility $t_f$, the offset between the output playback time and the latest input time used for conditioning, and output chunk duration $k$, the number of frames emitted per call. We train Transformer decoders across a grid of $(t_f,k)$ and show two consistent trade-offs: increasing effective $t_f$ improves coherence by reducing the recency gap, but requires faster inference to stay within the latency budget; increasing $k$ improves throughput but results in degraded accompaniment due to a reduced update rate. Finally, we observe that naive maximum-likelihood streaming training is insufficient for coherent accompaniment where future context is not available, motivating advanced anticipatory and agentic objectives for live jamming.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.