Embracing Trustworthy Brain-Agent Collaboration as Paradigm Extension for Intelligent Assistive Technologies (2510.22095v1)
Abstract: Brain-Computer Interfaces (BCIs) offer a direct communication pathway between the human brain and external devices, holding significant promise for individuals with severe neurological impairments. However, their widespread adoption is hindered by critical limitations, such as low information transfer rates and extensive user-specific calibration. To overcome these challenges, recent research has explored the integration of LLMs, extending the focus from simple command decoding to understanding complex cognitive states. Despite these advancements, deploying agentic AI faces technical hurdles and ethical concerns. Due to the lack of comprehensive discussion on this emerging direction, this position paper argues that the field is poised for a paradigm extension from BCI to Brain-Agent Collaboration (BAC). We emphasize reframing agents as active and collaborative partners for intelligent assistance rather than passive brain signal data processors, demanding a focus on ethical data handling, model reliability, and a robust human-agent collaboration framework to ensure these systems are safe, trustworthy, and effective.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.