Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Personalized Ad Impact via Contextual Reinforcement Learning under Delayed Rewards (2510.20055v1)

Published 22 Oct 2025 in cs.LG and stat.ML

Abstract: Online advertising platforms use automated auctions to connect advertisers with potential customers, requiring effective bidding strategies to maximize profits. Accurate ad impact estimation requires considering three key factors: delayed and long-term effects, cumulative ad impacts such as reinforcement or fatigue, and customer heterogeneity. However, these effects are often not jointly addressed in previous studies. To capture these factors, we model ad bidding as a Contextual Markov Decision Process (CMDP) with delayed Poisson rewards. For efficient estimation, we propose a two-stage maximum likelihood estimator combined with data-splitting strategies, ensuring controlled estimation error based on the first-stage estimator's (in)accuracy. Building on this, we design a reinforcement learning algorithm to derive efficient personalized bidding strategies. This approach achieves a near-optimal regret bound of $\tilde{O}{(dH2\sqrt{T})}$, where $d$ is the contextual dimension, $H$ is the number of rounds, and $T$ is the number of customers. Our theoretical findings are validated by simulation experiments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: