Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Extended LSTM: Adaptive Feature Gating for Toxic Comment Classification (2510.17018v1)

Published 19 Oct 2025 in cs.CL and cs.LG

Abstract: Toxic comment detection remains a challenging task, where transformer-based models (e.g., BERT) incur high computational costs and degrade on minority toxicity classes, while classical ensembles lack semantic adaptability. We propose xLSTM, a parameter-efficient and theoretically grounded framework that unifies cosine-similarity gating, adaptive feature prioritization, and principled class rebalancing. A learnable reference vector {v} in {R}d modulates contextual embeddings via cosine similarity, amplifying toxic cues and attenuating benign signals to yield stronger gradients under severe class imbalance. xLSTM integrates multi-source embeddings (GloVe, FastText, BERT CLS) through a projection layer, a character-level BiLSTM for morphological cues, embedding-space SMOTE for minority augmentation, and adaptive focal loss with dynamic class weighting. On the Jigsaw Toxic Comment benchmark, xLSTM attains 96.0% accuracy and 0.88 macro-F1, outperforming BERT by 33% on threat and 28% on identity_hate categories, with 15 times fewer parameters and 50ms inference latency. Cosine gating contributes a +4.8% F1 gain in ablations. The results establish a new efficiency adaptability frontier, demonstrating that lightweight, theoretically informed architectures can surpass large pretrained models on imbalanced, domain-specific NLP tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.