CALM-Net: Curvature-Aware LiDAR Point Cloud-based Multi-Branch Neural Network for Vehicle Re-Identification (2510.14576v1)
Abstract: This paper presents CALM-Net, a curvature-aware LiDAR point cloud-based multi-branch neural network for vehicle re-identification. The proposed model addresses the challenge of learning discriminative and complementary features from three-dimensional point clouds to distinguish between vehicles. CALM-Net employs a multi-branch architecture that integrates edge convolution, point attention, and a curvature embedding that characterizes local surface variation in point clouds. By combining these mechanisms, the model learns richer geometric and contextual features that are well suited for the re-identification task. Experimental evaluation on the large-scale nuScenes dataset demonstrates that CALM-Net achieves a mean re-identification accuracy improvement of approximately 1.97\% points compared with the strongest baseline in our study. The results confirms the effectiveness of incorporating curvature information into deep learning architectures and highlight the benefit of multi-branch feature learning for LiDAR point cloud-based vehicle re-identification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.