Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Putting on the Thinking Hats: A Survey on Chain of Thought Fine-tuning from the Perspective of Human Reasoning Mechanism (2510.13170v1)

Published 15 Oct 2025 in cs.CL

Abstract: Chain of thought (CoT) fine-tuning aims to endow LLMs with reasoning capabilities by training them on curated reasoning traces. It leverages both supervised and reinforced fine-tuning to cultivate human-like reasoning skills in LLMs, including detailed planning, divergent thinking, intuitive judgment, timely reflection, internal thinking, and fact perception, etc. As CoT fine-tuning has advanced, LLMs have demonstrated substantial improvements in tasks such as mathematical reasoning and code generation. However, existing surveys about CoT fine-tuning primarily focus on technical aspects and overlook a systematic analysis from the perspective of human reasoning mechanisms. Given that the ultimate goal of CoT fine-tuning is to enable LLMs to reason like humans, it is crucial to investigate this technique through the lens of human cognition. To fill this gap, we present the first comprehensive survey of CoT fine-tuning grounded in human reasoning theory. Specifically, inspired by the well-known Six Thinking Hats framework, which systematically characterizes common human thinking modes using six metaphorical hats, we classify and examine CoT fine-tuning methods through this lens. Furthermore, building upon this theory, we outline potential directions for future research in CoT fine-tuning. In addition, we compile a comprehensive overview of existing datasets and model performances, and a real-time GitHub repository \footnote{https://github.com/AI-Chen/Awesome-CoT-Finetuning} that continuously tracks recent advances in this area is maintained. We hope this survey will serve as a valuable resource to inspire innovation and foster progress in this rapidly evolving field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.