The $φ$-PCA Framework: A Unified and Efficiency-Preserving Approach with Robust Variants (2510.13159v1)
Abstract: Principal component analysis (PCA) is a fundamental tool in multivariate statistics, yet its sensitivity to outliers and limitations in distributed environments restrict its effectiveness in modern large-scale applications. To address these challenges, we introduce the $\phi$-PCA framework which provides a unified formulation of robust and distributed PCA. The class of $\phi$-PCA methods retains the asymptotic efficiency of standard PCA, while aggregating multiple local estimates using a proper $\phi$ function enhances ordering-robustness, leading to more accurate eigensubspace estimation under contamination. Notably, the harmonic mean PCA (HM-PCA), corresponding to the choice $\phi(u)=u{-1}$, achieves optimal ordering-robustness and is recommended for practical use. Theoretical results further show that robustness increases with the number of partitions, a phenomenon seldom explored in the literature on robust or distributed PCA. Altogether, the partition-aggregation principle underlying $\phi$-PCA offers a general strategy for developing robust and efficiency-preserving methodologies applicable to both robust and distributed data analysis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.