Large Language Model Prompt Datasets: An In-depth Analysis and Insights (2510.09316v1)
Abstract: A prompt is a natural language instruction that defines a specific task for a LLM and serves as the primary interface for human-LLM interaction. With the growing deployment of LLMs, diverse prompt datasets are emerging from platforms such as GitHub and social media. These datasets span a wide array of applications and content types, facilitating both broader LLM utilization and improved prompt engineering. In this work, we--for the first time--have compiled an extensive list of prompt datasets sourced from various channels, representing a spectrum of downstream tasks, languages, engineering techniques, attributes, and modalities. We select key representative datasets for systematic analysis, revealing commonalities and differences in prompt construction across categories, distinguishing them from other text corpora like literature and web. We further propose a prompt optimization approach that leverages syntactic embeddings of part-of-speech and dependency structures. By identifying a centroid representation of prompts and guiding LLMs to rewrite prompts toward this centroid, our method improves the meaningfulness of model outputs. We have made our datasets and code available.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.