Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

PL-CA: A Parametric Legal Case Augmentation Framework (2509.06356v1)

Published 8 Sep 2025 in cs.CL and cs.AI

Abstract: Conventional RAG is considered one of the most effective methods for addressing model knowledge insufficiency and hallucination, particularly in the judicial domain that requires high levels of knowledge rigor, logical consistency, and content integrity. However, the conventional RAG method only injects retrieved documents directly into the model's context, which severely constrains models due to their limited context windows and introduces additional computational overhead through excessively long contexts, thereby disrupting models' attention and degrading performance on downstream tasks. Moreover, many existing benchmarks lack expert annotation and focus solely on individual downstream tasks while real-world legal scenarios consist of multiple mixed legal tasks, indicating conventional benchmarks' inadequacy for reflecting models' true capabilities. To address these limitations, we propose PL-CA, which introduces a parametric RAG (P-RAG) framework to perform data augmentation on corpus knowledge and encode this legal knowledge into parametric vectors, and then integrates this parametric knowledge into the LLM's feed-forward networks (FFN) via LoRA, thereby alleviating models' context pressure. Additionally, we also construct a multi-task legal dataset comprising more than 2000 training and test instances, which are all expert-annotated and manually verified. We conduct our experiments on our dataset, and the experimental results demonstrate that our method reduces the overhead associated with excessively long contexts while maintaining competitive performance on downstream tasks compared to conventional RAG. Our code and dataset are provided in the appendix.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.