Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Use ADAS Data to Predict Near-Miss Events: A Group-Based Zero-Inflated Poisson Approach (2509.02614v1)

Published 31 Aug 2025 in stat.AP, cs.CE, and cs.LG

Abstract: Driving behavior big data leverages multi-sensor telematics to understand how people drive and powers applications such as risk evaluation, insurance pricing, and targeted intervention. Usage-based insurance (UBI) built on these data has become mainstream. Telematics-captured near-miss events (NMEs) provide a timely alternative to claim-based risk, but weekly NMEs are sparse, highly zero-inflated, and behaviorally heterogeneous even after exposure normalization. Analyzing multi-sensor telematics and ADAS warnings, we show that the traditional statistical models underfit the dataset. We address these challenges by proposing a set of zero-inflated Poisson (ZIP) frameworks that learn latent behavior groups and fit offset-based count models via EM to yield calibrated, interpretable weekly risk predictions. Using a naturalistic dataset from a fleet of 354 commercial drivers over a year, during which the drivers completed 287,511 trips and logged 8,142,896 km in total, our results show consistent improvements over baselines and prior telematics models, with lower AIC/BIC values in-sample and better calibration out-of-sample. We also conducted sensitivity analyses on the EM-based grouping for the number of clusters, finding that the gains were robust and interpretable. Practically, this supports context-aware ratemaking on a weekly basis and fairer premiums by recognizing heterogeneous driving styles.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube