Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MASCA: LLM based-Multi Agents System for Credit Assessment (2507.22758v1)

Published 30 Jul 2025 in cs.CL, cs.CE, and cs.LG

Abstract: Recent advancements in financial problem-solving have leveraged LLMs and agent-based systems, with a primary focus on trading and financial modeling. However, credit assessment remains an underexplored challenge, traditionally dependent on rule-based methods and statistical models. In this paper, we introduce MASCA, an LLM-driven multi-agent system designed to enhance credit evaluation by mirroring real-world decision-making processes. The framework employs a layered architecture where specialized LLM-based agents collaboratively tackle sub-tasks. Additionally, we integrate contrastive learning for risk and reward assessment to optimize decision-making. We further present a signaling game theory perspective on hierarchical multi-agent systems, offering theoretical insights into their structure and interactions. Our paper also includes a detailed bias analysis in credit assessment, addressing fairness concerns. Experimental results demonstrate that MASCA outperforms baseline approaches, highlighting the effectiveness of hierarchical LLM-based multi-agent systems in financial applications, particularly in credit scoring.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com