Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

How Much Do Large Language Model Cheat on Evaluation? Benchmarking Overestimation under the One-Time-Pad-Based Framework (2507.19219v1)

Published 25 Jul 2025 in cs.CL and cs.CR

Abstract: Overestimation in evaluating LLMs has become an increasing concern. Due to the contamination of public benchmarks or imbalanced model training, LLMs may achieve unreal evaluation results on public benchmarks, either intentionally or unintentionally, which leads to unfair comparisons among LLMs and undermines their realistic capability assessments. Existing benchmarks attempt to address these issues by keeping test cases permanently secret, mitigating contamination through human evaluation, or repeatedly collecting and constructing new samples. However, these approaches fail to ensure reproducibility, transparency, and high efficiency simultaneously. Moreover, the extent of overestimation in current LLMs remains unquantified. To address these issues, we propose ArxivRoll, a dynamic evaluation framework inspired by one-time pad encryption in cryptography. ArxivRoll comprises two key components: \emph{i) SCP (Sequencing, Cloze, and Prediction)}, an automated generator for private test cases, and \emph{ii) Rugged Scores (RS)}, metrics that measure the proportion of public benchmark contamination and training bias. Leveraging SCP, ArxivRoll constructs a new benchmark every six months using recent articles from ArXiv and employs them for one-time evaluations of LLM performance. Extensive experiments demonstrate the high quality of our benchmark, and we provide a systematic evaluation of current LLMs. The source code is available at https://github.com/liangzid/ArxivRoll/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: