Assessing the Capabilities and Limitations of FinGPT Model in Financial NLP Applications (2507.08015v1)
Abstract: This work evaluates FinGPT, a financial domain-specific LLM, across six key NLP tasks: Sentiment Analysis, Text Classification, Named Entity Recognition, Financial Question Answering, Text Summarization, and Stock Movement Prediction. The evaluation uses finance-specific datasets to assess FinGPT's capabilities and limitations in real-world financial applications. The results show that FinGPT performs strongly in classification tasks such as sentiment analysis and headline categorization, often achieving results comparable to GPT-4. However, its performance is significantly lower in tasks that involve reasoning and generation, such as financial question answering and summarization. Comparisons with GPT-4 and human benchmarks highlight notable performance gaps, particularly in numerical accuracy and complex reasoning. Overall, the findings indicate that while FinGPT is effective for certain structured financial tasks, it is not yet a comprehensive solution. This research provides a useful benchmark for future research and underscores the need for architectural improvements and domain-specific optimization in financial LLMs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.