Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 152 tok/s Pro
GPT OSS 120B 325 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Large Language Models Predict Human Well-being -- But Not Equally Everywhere (2507.06141v1)

Published 8 Jul 2025 in cs.HC

Abstract: Subjective well-being is a key metric in economic, medical, and policy decision-making. As artificial intelligence provides scalable tools for modelling human outcomes, it is crucial to evaluate whether LLMs can accurately predict well-being across diverse global populations. We evaluate four leading LLMs using data from 64,000 individuals in 64 countries. While LLMs capture broad correlates such as income and health, their predictive accuracy decreases in countries underrepresented in the training data, highlighting systematic biases rooted in global digital and economic inequality. A pre-registered experiment demonstrates that LLMs rely on surface-level linguistic similarity rather than conceptual understanding, leading to systematic misestimations in unfamiliar or resource-limited settings. Injecting findings from underrepresented contexts substantially enhances performance, but a significant gap remains. These results highlight both the promise and limitations of LLMs in predicting global well-being, underscoring the importance of robust validation prior to their implementation across these areas.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube