Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections (2409.09045v1)

Published 29 Aug 2024 in cs.CY, cs.AI, cs.CL, and stat.AP

Abstract: LLMs are perceived by some as having the potential to revolutionize social science research, considering their training data includes information on human attitudes and behavior. If these attitudes are reflected in LLM output, LLM-generated "synthetic samples" could be used as a viable and efficient alternative to surveys of real humans. However, LLM-synthetic samples might exhibit coverage bias due to training data and fine-tuning processes being unrepresentative of diverse linguistic, social, political, and digital contexts. In this study, we examine to what extent LLM-based predictions of public opinion exhibit context-dependent biases by predicting voting behavior in the 2024 European Parliament elections using a state-of-the-art LLM. We prompt GPT-4-Turbo with anonymized individual-level background information, varying prompt content and language, ask the LLM to predict each person's voting behavior, and compare the weighted aggregates to the real election results. Our findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. We show that (1) the LLM-based prediction of future voting behavior largely fails, (2) prediction accuracy is unequally distributed across national and linguistic contexts, and (3) improving LLM predictions requires detailed attitudinal information about individuals for prompting. In investigating the contextual differences of LLM-based predictions of public opinion, our research contributes to the understanding and mitigation of biases and inequalities in the development of LLMs and their applications in computational social science.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Leah von der Heyde (3 papers)
  2. Anna-Carolina Haensch (10 papers)
  3. Alexander Wenz (4 papers)

Summary

We haven't generated a summary for this paper yet.