Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fast Training-free Perceptual Image Compression (2506.16102v1)

Published 19 Jun 2025 in eess.IV and cs.CV

Abstract: Training-free perceptual image codec adopt pre-trained unconditional generative model during decoding to avoid training new conditional generative model. However, they heavily rely on diffusion inversion or sample communication, which take 1 min to intractable amount of time to decode a single image. In this paper, we propose a training-free algorithm that improves the perceptual quality of any existing codec with theoretical guarantee. We further propose different implementations for optimal perceptual quality when decoding time budget is $\approx 0.1$s, $0.1-10$s and $\ge 10$s. Our approach: 1). improves the decoding time of training-free codec from 1 min to $0.1-10$s with comparable perceptual quality. 2). can be applied to non-differentiable codec such as VTM. 3). can be used to improve previous perceptual codecs, such as MS-ILLM. 4). can easily achieve perception-distortion trade-off. Empirically, we show that our approach successfully improves the perceptual quality of ELIC, VTM and MS-ILLM with fast decoding. Our approach achieves comparable FID to previous training-free codec with significantly less decoding time. And our approach still outperforms previous conditional generative model based codecs such as HiFiC and MS-ILLM in terms of FID. The source code is provided in the supplementary material.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.