Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Latent Stochastic Interpolants (2506.02276v1)

Published 2 Jun 2025 in cs.LG and stat.ML

Abstract: Stochastic Interpolants (SI) are a powerful framework for generative modeling, capable of flexibly transforming between two probability distributions. However, their use in jointly optimized latent variable models remains unexplored as they require direct access to the samples from the two distributions. This work presents Latent Stochastic Interpolants (LSI) enabling joint learning in a latent space with end-to-end optimized encoder, decoder and latent SI models. We achieve this by developing a principled Evidence Lower Bound (ELBO) objective derived directly in continuous time. The joint optimization allows LSI to learn effective latent representations along with a generative process that transforms an arbitrary prior distribution into the encoder-defined aggregated posterior. LSI sidesteps the simple priors of the normal diffusion models and mitigates the computational demands of applying SI directly in high-dimensional observation spaces, while preserving the generative flexibility of the SI framework. We demonstrate the efficacy of LSI through comprehensive experiments on the standard large scale ImageNet generation benchmark.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com