On the Convergence of Decentralized Stochastic Gradient-Tracking with Finite-Time Consensus (2505.23577v1)
Abstract: Algorithms for decentralized optimization and learning rely on local optimization steps coupled with combination steps over a graph. Recent works have demonstrated that using a time-varying sequence of matrices that achieve finite-time consensus can improve the communication and iteration complexity of decentralized optimization algorithms based on gradient tracking. In practice, a sequence of matrices satisfying the exact finite-time consensus property may not be available due to imperfect knowledge of the network topology, a limit on the length of the sequence, or numerical instabilities. In this work, we quantify the impact of approximate finite-time consensus sequences on the convergence of a gradient-tracking based decentralized optimization algorithm, clarifying the interplay between accuracy and length of the sequence as well as typical problem parameters such as smoothness and gradient noise.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.