Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Graded Classification Conjecture holds for graphs with disjoint cycles (2505.16706v2)

Published 22 May 2025 in math.RA, math.DS, and math.OA

Abstract: The Graded Classification Conjecture (GCC) states that the pointed $K_0{\operatorname{gr}}$-group is a complete invariant of the Leavitt path algebras of finite graphs when these algebras are considered with their natural grading by $\mathbb Z.$ The conjecture has previously been shown to hold in some special cases. The main result of the paper shows that the GCC holds for a significantly more general class of graphs included in the class of graphs with disjoint cycles. In particular, our result holds for finite graphs with disjoint cycles. We show the main result also for graph $C*$-algebras. As a consequence, the graded version of the Isomorphism Conjecture holds for the class of graphs we consider. Besides showing the conjecture for the class of graphs we consider, we realize the Grothendieck $\mathbb Z$-group isomorphism by a specific graded $$-isomorphism. In particular, we introduce a series of graph operations which preserve the graded $$-isomorphism class of their algebras. After performing these operations on a graph, we obtain well-behaved ``representative'' graphs, which we call canonical forms. We define an equivalence $\approx$ on graphs such that $E\approx F$ holds when there are isomorphic canonical forms of $E$ and $F$ and we show that the condition $E\approx F$ is equivalent to the existence of an isomorphism $f$ of the Grothendieck $\mathbb Z$-groups of the algebras of $E$ and $F$ in the appropriate category. As $E\approx F$ can be realized by a finite series of specific graph operations, any such isomorphism $f$ can be realized by an explicit graded $$-algebra isomorphism. Thus, we describe the graded ($$-)isomorphism classes of the algebras of graphs we consider. Besides the ties to symbolic dynamics and Williams' Problem, such a description is relevant for the active program of classification of graph $C*$-algebras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com