Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 22 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Telco-oRAG: Optimizing Retrieval-augmented Generation for Telecom Queries via Hybrid Retrieval and Neural Routing (2505.11856v1)

Published 17 May 2025 in cs.IR

Abstract: Artificial intelligence will be one of the key pillars of the next generation of mobile networks (6G), as it is expected to provide novel added-value services and improve network performance. In this context, LLMs have the potential to revolutionize the telecom landscape through intent comprehension, intelligent knowledge retrieval, coding proficiency, and cross-domain orchestration capabilities. This paper presents Telco-oRAG, an open-source Retrieval-Augmented Generation (RAG) framework optimized for answering technical questions in the telecommunications domain, with a particular focus on 3GPP standards. Telco-oRAG introduces a hybrid retrieval strategy that combines 3GPP domain-specific retrieval with web search, supported by glossary-enhanced query refinement and a neural router for memory-efficient retrieval. Our results show that Telco-oRAG improves the accuracy in answering 3GPP-related questions by up to 17.6% and achieves a 10.6% improvement in lexicon queries compared to baselines. Furthermore, Telco-oRAG reduces memory usage by 45% through targeted retrieval of relevant 3GPP series compared to baseline RAG, and enables open-source LLMs to reach GPT-4-level accuracy on telecom benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.