Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

TeleOracle: Fine-Tuned Retrieval-Augmented Generation with Long-Context Support for Network (2411.02617v1)

Published 4 Nov 2024 in cs.CL, cs.LG, and cs.NI

Abstract: The telecommunications industry's rapid evolution demands intelligent systems capable of managing complex networks and adapting to emerging technologies. While LLMs show promise in addressing these challenges, their deployment in telecom environments faces significant constraints due to edge device limitations and inconsistent documentation. To bridge this gap, we present TeleOracle, a telecom-specialized retrieval-augmented generation (RAG) system built on the Phi-2 small LLM (SLM). To improve context retrieval, TeleOracle employs a two-stage retriever that incorporates semantic chunking and hybrid keyword and semantic search. Additionally, we expand the context window during inference to enhance the model's performance on open-ended queries. We also employ low-rank adaption for efficient fine-tuning. A thorough analysis of the model's performance indicates that our RAG framework is effective in aligning Phi-2 to the telecom domain in a downstream question and answer (QnA) task, achieving a 30% improvement in accuracy over the base Phi-2 model, reaching an overall accuracy of 81.20%. Notably, we show that our model not only performs on par with the much larger LLMs but also achieves a higher faithfulness score, indicating higher adherence to the retrieved context.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube